If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2-110x=9
We move all terms to the left:
121x^2-110x-(9)=0
a = 121; b = -110; c = -9;
Δ = b2-4ac
Δ = -1102-4·121·(-9)
Δ = 16456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16456}=\sqrt{484*34}=\sqrt{484}*\sqrt{34}=22\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-110)-22\sqrt{34}}{2*121}=\frac{110-22\sqrt{34}}{242} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-110)+22\sqrt{34}}{2*121}=\frac{110+22\sqrt{34}}{242} $
| -8x-7-5x=15 | | 18+12x=90 | | 9+2a=13 | | 25x^2+30x=-8 | | x^2−14=−14 | | x2−14=−14 | | 6=-6(w+94) | | (10+x)*2=25+x | | (6a-)5a=a^2-35a | | 3a+5-5a=2a+7 | | 0=25x^2+50x | | (4/3)x^2=5x | | 0=25x^2+50x+25 | | 5v+1=16 | | 8-y=28 | | (2/3)x^2=5x | | 8x-3=10x-44 | | 4r^2-90=-2r | | 2n+8=3-14 | | 5v+1=6 | | 3^(5x-8)=243 | | -4b-7+7b=3b-8 | | 9/2+5/2y=y-4 | | 4x+1=3x+2=2x | | 38-18=4(x-5) | | 38+3y-13=12y-11-3y | | 3=(-5n+2)/4 | | 3=-5n+2/4 | | g+-8=7 | | 3n^2-10n-14=-6 | | a2+9a-682=0 | | 6x+7x+7+5x+10+4x+13=360 |